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Streamline patterns and their bifurcations in two-dimensional Navier–Stokes flow
of an incompressible fluid near a non-simple degenerate critical point close to a
stationary wall are investigated from the topological point of view by considering
a Taylor expansion of the velocity field. Using a five-order normal form approach
we obtain a much simplified system of differential equations for the streamlines.
Careful analysis of the simplified system gives possible bifurcations for non-simple
degeneracies of codimension three. Three heteroclinic connections from three on-wall
separation points merge at an in-flow saddle point to produce two separation bubbles
with opposite rotations which occur only near a non-simple degenerate critical point.
The theory is applied to the patterns and bifurcations found numerically in the studies
of Stokes flow in a double-lid-driven rectangular cavity.

1. Introduction
The use of dynamical systems to qualitatively describe streamline patterns has a long
history; for basic ideas see for example Hunt et al. (1978) and the review paper by
Tobak & Peake (1982). Early studies on separation and attachment were performed
by Oswatitsch (1958) and Legendre (1948). Davey (1961) and Lighthill (1963) studied
flow around obstacles and Dallmann & Gebing (1994) considered flow attachment at
flow separation lines. The topological view point was applied to the wake flow behind
bluff bodies by Perry, Chong & Lim (1987).

In the present paper, using qualitative theory we make a local analysis of the
velocity field based on a Taylor series expansion of the streamfunction close to a non-
simple degenerate critical point. The coefficients in the Taylor series will be considered
as bifurcation parameters. The topological structure of the fluid flow generated by the
flow field may change qualitatively as parameters or boundary conditions are varied.
As the flow field changes through a degenerate configuration that is structurally
unstable, the streamline patterns can bifurcate and new structures arise. However,
note that in the present study, for each value of the parameters, there is always a
unique stable steady velocity field, but as the parameter is varied bifurcations in
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streamline patterns (i.e. for the ordinary differential equations ẋ = u) occur. It is the
bifurcations of these equations considered as a dynamical system that we will explore.

Bifurcations near a critical point on a stationary plane and in a three-dimensional
flow pattern were studied by Bakker (1989) and Dallmann (1983), respectively.
Brøns & Hartnack (1999) and Hartnack (1999) studied the possible flow structure
in a two-dimensional incompressible flow away from boundaries and close to a fixed
wall, respectively. They used normal form transformations which result in a much
simplified system of differential equations for streamlines. The streamline topologies
close to free and viscous surfaces in a cylinder with a rotating bottom were studied
by Brøns, Voigt & Sorensen (2001). Ma & Wang (1999) studied topologies of two-
dimensional incompressible flows and applications to geophysical fluid dynamics. Ghil,
Ma & Wang (2001) showed precisely how a structural bifurcation of one-parameter
families of two-dimensional incompressible flows occurs at a degenerate critical point
on the boundary satisfying some natural conditions. By using a parameterization
method Bakker (1989) classified flow structures at the rear of the circular cylinder in
steady flow without having to consider non-generic subspaces of the parameter space.
Brøns & Hartnack (1999) and Hartnack (1999) stated that the method of Bakker is
unclear.

The normal form calculations determine the codimension of the degeneracies. Using
this theory Hartnack (1999) obtained a normal form of the streamline topologies
for simple degenerate critical points near a fixed wall whereas for a non-simple
degeneracy he stated that the normal form approach will not work and the canonical
transformation was used. Here we extend Harnack’s method for the simple degeneracy
to the non-simple degeneracy near a fixed wall and show that for a non-simple
degeneracy, the normal form approach for the order 5 works for codimension three.
From this a dynamical system is obtained which is almost the same as in Bakker
(1989). By using Bakker’s descriptions we give a classification of flow structures that
can be also observed in Stokes flow within a double-lid-driven cavity.

The double-lid-driven rectangular cavity with two moving lids and two solid walls
has been considered by Weiss & Florsheim (1965) who investigated Stokes flow in
such a cavity both experimentally and theoretically for speed ratio S =1 (i.e. two lids
moving in the same direction with equal speed). They expanded the streamfunction
in terms of a set of functions which satisfy the boundary conditions on the upper
and lower lids, and employed a variational principle to generate a solution to the
biharmonic equation. Their solution showed that for the cavity aspect ratio A (depth
to width) = 0.5 and 1 there are two eddies of equal size; for A= 2 and 3 there are four
eddies, and six eddies for A= 4. Using a biorthogonal series expansion, Sturges (1986)
found that for S = −1 (i.e. two lids moving in opposite directions with equal speed)
and A � 2.4 separation bubbles (small sideeddies) appear along the sidewalls. As A

was increased these side eddies were found to grow in size and merge to establish a
new eddy. Gürcan (2003) considered the same problem and confirmed the results for
A> 1 whereas for A → 0 he used both an analytic solution for the streamfunction and
methods from nonlinear dynamics for the velocity field. He showed that bifurcations
occur only at the origin and give rise to separatrices with three sub-eddies (three
centres and two saddles) and hence the flow structure consists of a series of nested
separatrices, each contained within the central section of the previous one.

Chien, Rising & Ottino (1986), Leong & Ottino (1989a, b), Ottino (1989), Aref
(1991), Kusch & Ottino (1992) and Jana, Metcalfe & Ottino (1994) studied the
mixing of flows in rectangular cavities with two moving lids both experimentally and
numerically. In general, they found that for A � 1 and S < 0 a single eddy occupies the
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cavity whereas for S > 0 a double eddy structure was seen. Meleshko (1996) considered
a Fourier series approach to examine the double-lid-driven cavity with non-uniform
velocity distributions on the lids. Gürcan et al. (2003) used an infinite series of
Papkovich–Faddle eigenfunctions for the streamfunction to investigate possible flow
transformations for two parameters in the range A ∈ (0, 3.2) and S ∈ [−1, 0). Here
for the same cavity problem, flow transformations are investigated in the light of the
theoretical results described in § 2 as A is increased beyond A= 4 with S ∈ (−1, 10−4).

2. Streamline topologies near a non-simple degenerate critical point
We consider an incompressible two-dimensional flow near a stationary wall. A

streamfunction Ψ exists such that the streamlines are found from

ẋ = u =
∂Ψ

∂y
, ẏ = v = −∂Ψ

∂x
. (1)

To determine local information about the flow close to a given point which is taken
as the origin, Ψ is expanded in a power series,

Ψ =

∞∑
i,j=0

ai,j x
iyj . (2)

In this section we consider the coefficients of the series at some finite order so the
analyticity of Ψ is not important. We consider the x-axis as a stationary wall and
investigate topologies under the assumption of the zero-flux and no-slip conditions,
Ψ (x, 0) = 0 and (∂Ψ/∂y)(x, 0) = 0, respectively. Applying these to the streamfunction
(2) gives

Ψ = y2

( ∞∑
i,j=0

ai,j+2x
iyj

)
. (3)

The above discussions are based on the existence of a streamfunction for which only
incompressibility is assumed. Since we consider the Navier–Stokes equation near a
stationary wall, it is necessary to determine whether the equation in steady flows can
impose any restrictions on (3). This can be done by inserting expression (3) into the
vorticity transport equation

ν∇4Ψ =
∂∇2Ψ

∂t
+

∂Ψ

∂y

∂

∂x
(∇2Ψ ) − ∂Ψ

∂x

∂

∂y
(∇2Ψ ), (4)

which can be obtained by eliminating the pressure in the Navier–Stokes equation,
and collecting terms to yield a series of algebraic equations for the ai,j . The equations
of order zero and one are given by

x0y0: a2,2 + 3a0,4 = 0,

x1y0: a3,2 + a1,4 = 0,

x0y1: ν(a2,3 + 5a0,5) = 1
6
a1,2a0,2,


 (5)

where ν is the kinematic viscosity. In our study only the condition of the coefficient
of order zero will be used in (3). Note when (3) is inserted into the Stokes equation
(in the limit ν → ∞ in (4)) we obtain the same equation as in that of order zero in (5).
This means that all topologies described in this work can occur in steady Stokes flow.
However, when higher-order coefficients are used, combinations of ai,j for Stokes flow
are different from (5).
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The linear approximation of the equations for the streamlines is
 ·

x

·
y


 =

(
2a0,2

0

)
+

(
2a1,2 3a0,3

0 −a1,2

)(
x

y

)
, (6)

with the Jacobian

J =

(
2a1,2 3a0,3

0 −a1,2

)
. (7)

If 2a0,2 = 0 in (6), the origin is a critical point. If det(J) = 0 the critical point is
degenerate and higher-order terms are needed to determine the local pictures of
streamline patterns. There are two distinct subcases. The first, when eigenvalues of (7)
are zero, will be referred to as a simple degeneracy, and the second, when J is the zero
matrix, will be referred to as a non-simple degeneracy, see Brøns & Hartnack (1999).
If a1,2 = 0 in (7), the critical point becomes a simple degenerate critical point which
was investigated by Hartnack (1999). He also considered the non-simple degeneracy
with codimension two by using the canonical transformation with a0,2 = a1,2 = a0,3 = 0.

Here, using the normal form theory, the method of determining streamline
topologies for the simple degeneracy is extended to the non-simple degeneracy with
the assumptions a0,2 = a1,2 = a0,3 = 0 and a2,2 = 0. The last condition increases the
degeneracy with codimension three and allows us more possible flow patterns near
the non-simple degenerate point. From the assumptions and the equation of order
zero in (5), one obtains the streamfunction

Ψ = y2(a1,3xy + a3,2x
3 + a2,3x

2y + a1,4xy2 + a0,5y
3) + O((x, y)6). (8)

For a significant simplification of higher-order terms in the streamfunction and easy
determination of the codimension, we use the normal form theory in the next section.

2.1. The normal form transformation

The successive transformations from the Hamiltonian systems to a much simplified
system of differential equations for the streamlines (a normal form) encapsulating
all the evolution of the original system can be performed by using canonical trans-
formations with generating functions, see Brøns & Hartnack (1999) and Hartnack
(1999). It will be shown how to simplify terms of fifth order in (8). The new coordinates
(ξ, η) are found from a canonical transformation defined by the generating function

S = yξ +
∑

i+j=3

si,j y
iξ j , (9)

such that

x =
∂S

∂y
, η =

∂S

∂ξ
. (10)

Solving (10) for x, y and including terms up to the second order yields

x = ξ + s1,2ξ
2 + 2s2,1ξη + 3s3,0η

2, (11)

y = η − 3s0,3ξ
2 − 2s1,2ξη − s2,1η

2. (12)

We require that the boundaries are preserved under the transformation, i.e. y = 0
is mapped to η =0. This is achieved by taking s0,3 = 0 in (12). Inserting this trans-
formation in (8) and truncating after the fifth order, we obtain

Ψ = η2[a1,3ξη + a3,2ξ
3 + (a2,3 − 5 a1,3s1,2)ξ

2η

+ (−a1,3s2,1 + a1,4)ξη2 + (3 a1,3s3,0 + a0,5)η
3] + O((ξ, η)6). (13)
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η

ξ

Figure 1. Streamline pattern near a non-simple degenerate critical point for (16).

We are free to choose the si,j . With the choices

s3,0 =
−a0,5

3a1,3

, s2,1 =
a1,4

a1,3

, s1,2 =
a2,3

5a1,3

, (14)

we eliminate a number of terms and get

Ψ = η2(a1,3ξη + a3,2ξ
3) + O((ξ, η)6). (15)

Under the condition a3,2 �= 0 further reduction is possible by dividing the
streamfunction by a3,2 and then scaling η by the substitution η → (a3,2/a1,3)η. Finally,
dropping the O-terms in (15) gives the normal form of order 5 for Ψ for an on-wall
non-simple degenerate critical point and one obtains the following.

Theorem 3.1. Let a0,2, a1,2, a0,3 and a2,2 be taken as zero. Assuming the condition
a1,3 �= 0 and a3,2 �= 0, then the normal form for Ψ is

Ψ = η2(ξη + ξ 3). (16)

From the normal form the local flow topology in the neighbourhood of the non-simple
degenerate critical point is easily obtainable. Possible separatrices of the critical point
are given by Ψ = 0 which yields

η + ξ 2 = 0, η = 0 and ξ = 0. (17)

In the physical plane (η � 0) considered here, there is a non-simple degenerate critical
point showing a saddle with two hyperbolic sectors, see figure 1. For η < 0, see Bakker
(1989).

2.2. Unfolding of a non-simple degenerate critical point

The previous section only involved flow patterns which are structurally unstable when
the parameters take certain degenerate values. Rather, we aim to find all possible
patterns that may occur when the degenerate streamfunction is perturbed. To study
the bifurcations close to the non-simple degenerate critical points, we introduce the
small parameters,

ε1 = a0,2, ε2 = a1,2, ε3 = a0,3, ε4 = a2,2, (18)

and apply normal form transformations to simplify the system, but now include the
small parameters in the transformations. We briefly show how to simplify fifth-order
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terms in the streamfunction. A generating function is chosen,

S = yξ +
∑

i+j+k+l+m+n=3

sijklmny
iξ j εk

1ε
l
2ε

m
3 εn

4 , (19)

defining a canonical transformation through the relations (10). Solving (10) for x, y

and including terms up to second order yields

x = s120000ξ
2 + 2 s210000ξ η + s111000ξ ε1 + s110100ξ ε2 + s110010ξ ε3 + s110001ξ ε4

+ 3 s300000η
2 + 2 s201000η ε1 + 2 s200100η ε2 + 2 s200010η ε3 + 2 s200001η ε4

+ s102000ε1
2 + s101100ε1ε2 + s101010ε1ε3 + s101001ε1ε4 + s100200ε2

2

+ s100110ε2ε3 + s100101ε2ε4 + s100020ε3
2 + s100011ε3ε4 + s100002ε4

2 + ξ, (20)

y = −3 s030000ξ
2 − 2 s120000ξ η − 2 s021000ξ ε1 − 2 s020100ξ ε2 − 2 s020010ξ ε3 − 2 s020001ξ ε4

− s210000η
2 − s111000η ε1 − s110100η ε2 − s110010η ε3 − s110001η ε4 − s012000ε1

2

− s011100ε1ε2 − s011010ε1ε3 − s011001ε1ε4 − s010200ε2
2 − s010110ε2ε3

− s010101ε2ε4 − s010020ε3
2 − s010011ε3ε4 − s010002ε4

2 + η. (21)

As earlier, the original boundary y =0 is to be mapped onto η = 0. This is achieved
by choosing

s010002 = s010011 = s010020 = s010101 = s010110 = 0,

s010200 = s011001 = s011010 = s011100 = s012000 = 0,

s020001 = s020010 = s020100 = s021000 = s030000 = 0.


 (22)

Inserting the transformation equations (20) and (21) with (22) into the streamfunction
(3), one obtains

Ψ = η2

[
a3,2ξ

3 + (a2,3 − 5 a1,3s120000)ξ
2η + (−a1,3s210000 + a1,4)ξ η2

+ (a0,5 + 3 a1,3s300000)η
3 + (4 ε1s120000

2 − 3 ε2s120000 + ε4)ξ
2

+ (a1,3 − 6 ε3s120000 + 4 ε1s210000s120000)ξ η + (3 s300000 + 2 a1,3s200100)ε2η
2

+ (−3 s210000 + 2 a1,3s200010)ε3η
2 +

(
−1

3
+ 2 a1,3s200001

)
ε4η

2 + (s210000
2

+ 2 a1,3s201000)ε1η
2 + (−4 ε1s120000 + ε2)ξ + (2 s201000ε1ε2 + 2 s200010ε2ε3

+ ε3 + 2 s200100ε2
2 + 2 s200001ε2ε4 − 2 ε1s210000)η + ε1

]
+ O((ξ, η)6. (23)

By choosing

s200001 =
1

6

1

a1,3

, s210000 =
a1,4

a1,3

, s120000 =
1

5

a2,3

a1,3

, s300000 = −1

3

a0,5

a1,3

,

s201000 = −1

2

a1,4
2

a1,3
3
, s200100 =

1

2

a0,5

a1,3
2
, s200010 =

3

2

a1,4

a1,3
2
.

and setting the remaining coefficients in the generating function S equal to zero, the
result is

Ψ = η2

[
a3,2ξ

3 +

(
4

25

ε1a2,3
2

a1,3
2

− 3

5

ε2a2,3

a1,3

+ ε4

)
ξ 2 +

(
a1,3 − 6

5

ε3a2,3

a1,3

+

(
4

5

ε1a1,4a2,3

a1,3
2

)
ξη

+

(
− 4

5

ε1a2,3

a1,3

+ε2

)
ξ +

(
− a1,4

2ε1ε2

a1,3
3

+3
a1,4ε2ε3

a1,3
2

+ε3 +
a0,5ε2

2

a1,3
2

1

3

ε2ε4

a1,3

− 2
ε1a1,4

a1,3

)
η

+ ε1

]
+ O((ξ, η)6. (24)
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Translation of the origin will remove the terms of the next highest degree in a
polynomial by replacing ξ by ξ + ξ0, where

ξ0 = − 1

75

4 ε1a2,3
2 − 15 ε2a2,3a1,3 + 25 ε4a1,3

2

a1,3
2a3,2

;

then we obtain

Ψ = η2(µ1 + µ2ξ + µ3η + µ4ξη + a3,2ξ
3) + O((ξ, η)6, (25)

where µ1, µ2, µ3, µ4 are new small parameters depending on ε1, ε2, ε3. A final
simplification can be obtained by first dividing Ψ by a3,2 corresponding to scaling the
time and then scaleing η by the substitution η → (a3,2 / µ4)η to obtain

Ψ = η2(µ1 + µ2ξ + µ3η + ξη + ξ 3) + O((ξ, η)6. (26)

Proceeding as above, in the general case (returning the coordinates back to x, y) one
obtains the following.

Theorem 3.2. Let a0,2, a1,2, a0,3 and a2,2 be small parameters. Assuming the non-
degeneracy conditions a1,3 �= 0, a3,2 �= 0 are satisfied, then the normal form of order
5 for the streamfunction (3) is

Ψ = y2(µ1 + µ2x + µ3y + xy + x3), (27)

where µ1, µ2 and µ3 are small transformed parameters.

Using the normal form (27) having codimension three the corresponding dynamical
system (time scaled with y),

ẋ = 2µ1 + 2µ2x + 3µ3y + 3xy + 2x3,

ẏ = −y(µ2 + y + 3x2),

}
(28)

with the Jacobian

J =

(
2µ2 + 3y + 6x2 3µ3 + 3x

−6xy −µ2 − 2y − 3x2

)
,

can be analysed by using the description by Bakker (1989). When det(J) = 0 on-wall
bifurcation occurs for

µ1 + µ2x + x3 = 0,

µ2 + 3x2 = 0.

}
(29)

By eliminating x one finds (
µ2

3

)3

= −
(

µ1

2

)2

, (30)

which forms a bifurcation set labelled A1. For this curve, corresponding to a third-
order saddle point, there are two possible unstable structures which are illustrated in
figure 2, see 2 (above B on A1) and 10 (below B). This figure shows bifurcation sets
dividing the parameter plane into several sub-domains where topologically different
flow patterns occur. This is almost the same as those of Bakker and hence we
omit the details except the possibility of global bifurcations such as saddle to saddle
connections of off- and on-wall critical points. This requires Ψ to attain the same
value at the on- and off-wall critical points. Evaluating Ψ at the wall and at an in-flow
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Figure 2. Bifurcation diagram for the fifth-order normal form and corresponding flow
patterns. Parameters, µ2 = k( 1

2
µ1)

2/3, µ3 = l( 1
2
µ1)

1/3 for µ1 �= 0, are considered as in Bakker
(1989).

critical point, (−µ3, −µ2 + µ2
3), satisfying (28) gives zero and an algebraic condition

µ1 − µ2µ3 − µ3
3 = 0. (31)

This means that (31) has a global bifurcation curve labelled A3, see pattern 6 in
figure 2 where a separation bubble and a separating streamline interact with an
in-flow saddle point creating two separation bubbles around the flow centres with
opposite rotations. This pattern cannot be observed by using the unfolding of simple
degeneracies which gives rise to the interaction of separation bubbles with the same
rotation observed by Hartnack (1999).

In the next section, we apply the theory to describe the possible qualitative structures
of the bifurcation sets in the double-lid-driven rectangular cavity problem.
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(–1, A)

(–1, –A)

(1, A)

(1, –A)

ψ = 0, ψy = S

ψ = 0, ψy = 1

ψ = ψx = 0 ψ = ψx = 0

y

x∇4ψ = 0

Figure 3. The dimensionless boundary value problem for the double-lid-driven cavity.

3. Application
The two-dimensional Stokes flow of an incompressible fluid in a double-lid-driven

rectangular cavity with two solid walls lying along X = ±L and two moving lids
lying along Y = ±H is governed by the biharmonic equation for the stream-
function ψ

∇4ψ = 0. (32)

Lengths are non-dimensionalized with respect to L such that the flow domain is given
by |x| � ± 1, |y| � ± A where A= L/H is the cavity aspect ratio and S = U1/U2 is
the speed ratio where U1 and U2 are the top and bottom lid velocities, respectively
(see figure 3). The streamfunction is set equal to zero on the boundaries of the closed
domain, i.e.

ψ(±1, y) = 0 and ψ(x, ±A) = 0, (33)

and the no-slip conditions for the upper and lower lids and sidewalls are

∂ψ

∂y
(x, A) = S ,

∂ψ

∂y
(x, −A) = 1, (34)

∂ψ

∂x
(1, y) =

∂ψ

∂x
(−1, y) = 0. (35)

Following Gürcan (1997) and Joseph & Sturges (1978) the streamfunction for any
value of S can be written as

ψ =

∞∑
n=−∞

{
Ane

sn(y−A) + Bne
−sn(y+A)

}φn
1 (x, sn)

s2
n

, (36)

where the complex coefficients An and Bn are determined from the boundary
conditions using a truncation technique employing Smith’s (1952) biorthogonality
relation. The sn are complex eigenvalues and the functions φn

1 are even Papkovich–
Faddle eigenfunctions, satisfying the no-slip boundary conditions on the sidewalls,
see Gürcan (1997) for more details. When the coefficients have been determined, the
streamfunction at any interior point in the liquid is obtained by simply summing a
finite number of terms in the series (36) while ensuring that the magnitude of the
truncation error is acceptably small, see Gürcan et al. (2003). Figures in the present
paper were produced using a truncation number of N = 200.

3.1. Flow patterns

We consider (S, A) space in the range −1 <S < − 10−4 and 4 <A< 5 to obtain a
number of key stages in the flow structures and to construct a bifurcation diagram
exhibiting flow bifurcations at degenerate critical points. It is necessary to describe
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(d) (e)
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Figure 4. Streamline patterns for the double-lid-driven cavity with S increasing and A = 4.5.
(a) S = −0.0035, (b) S = −0.0029, (c) Sc = −0.0028, (d) S = −0.00268 and (e) S = −0.0023.

exactly what is meant by bifurcation, since for each combination of S and A in the
cavity problem there is always a unique flow field. At stagnation points the fluid
velocity, u, is zero and so such points are solutions of u(x, S, A) = ẋ(x, S, A) = 0.
Hence as A and S are changed, the number (or type) of stagnation points changes at
critical values of these parameters, and in this section the term bifurcation refers to
such a change in the stagnation point configuration.

We first consider A= 4.5 for increasing S from −1 to −10−4 and obtain a sequence
of flow patterns as illustrated in figure 4. In particular, figure 4(a) shows three large
eddies with two small separation bubbles (side eddies) along the sidewalls of the
central section. As S is increased it is the flow within this central section, between the
two separating streamlines, which undergoes structural change. The side eddies grow
and approach the separating streamline near the upper eddy; and at S1 = −0.00306
saddle node bifurcations arise between this separating streamline and side eddies.
Figure 4(b) shows the flow pattern when S = −0.0029. As S continues to increase P1

and P3 in figure 4(b) approach the saddle point P2 and at the critical speed ratio
Sc = −0.0028, P1 and P3 merge with P2 to produce four heteroclinic connections
from each saddle point, figure 4(c). When S is increased beyond Sc the heteroclinic
connections separate from the saddle points P2 and P4, see figure 4(d). Between each
side eddy and the separating streamline there is a sub-eddy with a saddle point
close to the sidewalls. As S is increased the centres and saddle points approach each
other, coalesce and disappear at S2 = −0.00256. Figure 4(e) shows the flow pattern
for S = −0.0023. At S3 = −0.00178 the side eddies disappear and three eddies occupy
the cavity.

The flow transformations shown in figure 4 can be tracked as A and S are varied
and this is illustrated in an (S, A) control space diagram (see figure 5) with bifurcation
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Figure 5. (S,A) control space diagram with the bifurcations curves.

curves. Figure 5 shows a quasi-flow-symmetry about the bifurcation curve 6 with the
value of Sc = −0.0028. For S < Sc flow development in the central section follows a
similar pattern to that in the upper section of the cavity for S >Sc. By variation of
the speed ratio for a fixed A in figure 5 one encounters most of the flow patterns
and their bifurcations shown in figure 2. The flow patterns 1–9 and 13 in figure 2
correspond exactly to the patterns in figure 5 which are labelled with the same number
as those of in figure 2. However, patterns 10, 11 and 12 in figure 2 cannot appear in
the cavity for the considered values of (S, A) parameters, i.e. the flow configuration
jumps from type 9 to type 13 in figure 5. This may be interpreted by using only two
bifurcation parameters in the cavity where bifurcations with codimension up to two
occur generically. Whereas in the theory three bifurcation parameters (µ1, µ2, µ3) are
considered to determine flow bifurcations for codimension three. If two bifurcation
parameters µ2, µ3 are considered (take µ1 = 0) then the jump can also be observed.
From the bifurcation equations, (30) and (31), one may simply obtain a bifurcation
diagram in the (µ2, µ3) parameter plane having only the flow patterns 1–9 and 13.

4. Conclusion
Normal form theory provides a context for determining the codimension of

degenerate patterns and their bifurcations by simplifying the dynamical system
significantly. There are two types of degenerate critical points (simple and non-
simple degeneracies) which depend on the Jacobian matrix of the velocity field. We
consider a non-simple degenerate critical point and develop the normal form theory
for this point close to the stationary wall. A bifurcation diagram is constructed for
the fifth-order normal form of the streamfunction by using the simplified dynamical
systems. By considering the unfolding of fifth-order non-simple degeneracies we
obtain a global bifurcation which gives rise to two separation bubbles with opposite
rotations.

A topological classification provides guidelines for identification of structures in any
flow. We have shown how this could be done for Stokes flow in a double-lid-driven
rectangular cavity. Using an analytical solution for the streamfunction we obtain
streamline patterns in the rectangular cavity. It is the flow within the central section
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of the cavity which undergoes structural change. These are similar to those obtained
from the theory. We also find some structurally unstable flow patterns from the theory
using three parameters whereas these patterns may not be seen in the cavity problem
because two bifurcation parameters are used.

The authors are grateful to Professor M. D. Savage for his help and a reviewer for
helpful suggestions.
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